
Filter Banks – III

The Polyphase Representation

1

Dr. Yogananda Isukapalli



The Polyphase Representation

2

1. Basic idea
2. Types of polyphase representation
3. Polyphase implementations

a) Decimation filters
b) Interpolation filters
c) Uniform DFT filter banks

4. Commutator models
5. Polyphase matrix

a) Analysis bank
b) Synthesis bank

6. Polyphase representation of M-channel QMF banks
7. Relation between polyphase matrix and AC matrix



The Polyphase Representation

(1)

3

Separating odd and even numbered coefficients of h(n)

(2)

h(n)z–n

1. Basic Idea

Polyphase representation leads to computationally efficient implementations  
of decimation/interpolation filters, as well as single and multirate filter banks

Consider a filter
¥

å
n = –¥

H(z) =

h(2n + 1)z–2n
¥

å
n = –¥

h(2n)z–2n + z–1
¥

å
n = –¥

H(z) =

2 –1 2
H(z) =  E0(z  )+ z E1(z )

¥

å h(2n + 1)z–n

n = –¥ n = –¥
These representations hold whether H(z) is FIR or IIR; causal or noncausal

¥

åwhere E0(z) = h(2n)z–nand E (z) =
1
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as
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i.e

or

Example 1 - Consider a FIR filter whose transfer function is

H(z) = 1 + 2z–1 + 3z–2 + 4z–3 . It’s polyphase representation is given

H(z) = 1 + 3z–2 + 2z–1 + 4z–3

H(z) = 1 + 3z–2 + z–1(2 + 4z–2 )
Therefore,

2 –2
E0(z ) = 1 + 3z ,

2 –2
E1(z ) = 2 + 4z

–1
E0(z) =  1 + 3z ,

–1
E1(z) = 2 + 4z

Example 2 - Consider a IIR filter whose transfer function is H(z) = 1 ⁄ (1 – az–1 )
This can be written as

(1 – az )(1 + az )

1 + az–1 1 az–1

1 – a z 1 – a z
H(z) =  -------------------–--1------------------------–--1---- = --------------2-----–--2-+ --------------2-----–--2- which implies

2 2 –2
E0(z  ) =  1 ⁄ (1 –a z ) and

so E (z) = 1 ⁄ (1 – a2z–1) and
0

2 2 –2
E1(z ) = a ⁄ (1 – a z

2 –1
E1(z) = a ⁄ (1 – a z )
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2. Types of polyphase representation

Generalizing the above idea, for any integer M, H(z) can be decomposed as

5

(3)

( type 1 polyphase representation ) (4)

(5)

(6)

h(nM + 1)z–nM + . . .h(nM)z–nM + z–1
¥

å
n = –¥

… + z–(M – 1) h(nM + M – 1)z–nM

¥

å
n = –¥
¥

å
n = –¥

–n
el(n)z ,

This can be compactly represented as
M – 1

H(z) = å z–lE (zM )
l

l  = 0
¥

åwhere El(z) =
n  = –¥

with  el(n) =  h(Mn + l), 0 £ l £ M – 1
Equation (4) is called the Type 1 polyphase representation and El(z) the polyphase

H(z) =
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(type 2 polyphase representation) (7)

(8)

3. Efficient structures for Decimation and Interpolation filters

Consider decimation of a signal by a factor 2.
y(n) = x(2n) (9)

fig1. Decimation by 2

By representing H(Z) as in (2), the system can be redrawn as in fig 2.a.

components of H(z). El(z) depends on the choise of M.  
A variation of (3) is given as

M – 1

å z–(M – 1 – l)R (zM )
lH(z) =

l = 0
The Type 2 polyphase components Rl(z) are permutations of El(z) and is givenas

Rl(z) = EM – 1 – l(z)

x(n) y(n)
H(z) 2

6



The Polyphase Representation

Identity 2

x(n)

y(n)

E0(z2)

E1(z2)

E0(z)

E1(z)2

2

2

From noble’s identity 1, this can be again redrawn as in fig 2.b

x(n)

(a) (b)

fig2. The decimation filter. (a) The polyphase implementation (b) moving the polyphase
components

Note - The Noble’s Identities
If a function G(z) is rational then  

Identity 1

y(n)

LG(z) G(zL)L
x(n) y3(n) x(n) y4(n)

M G(z) G(zM) M
x(n)

7

y1(n) x(n) y2(n)
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�

fig3 - Direct implementation of decimation

For the direct form implementation only the even numbered output samples are
computed in each time unit. This computation requires N+1 multiplications and  
N additions, where N is the order of the FIR filter.
� For the polyphase implementation, let no and n1 be the orders of E0(z) and E1(z)
( so that N+1 = n0+n1+2). So El(z) requires nl+1 multipliers and nl additions.  

Therefore the total cost is again N+1 multipliers and N adders. But since El(z)  
operates at half the rate of H(z), only a total of (N+1)/2 multiplications per unit time  
(MPU’s) and N/2 additions per unit time (APU’s) are required. The multipliers and  
adders in each of the filters E0(z) and E1(z) now have two units of time available for  
doing their work, and they are continually operative unlike the direct form  
implementation which is idle during odd instants of time

x(n)

h(0) h(1) h(N)

y(n)

Z-1

8

Z-1 Z-1
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�A M-fold decimation filter can be implemented with approximately M-fold reduction  in 
the number of MPU’s and APU’s by using the polyphase structure. The Polyphase  structure 
has complexity (N+1)/M MPU’s and N/M APU’s.

fig4. Polyphase implementation of M-fold decimation filter.

E0(z)

E1(z)M

M
x(n)

EM-1(z)M
y(n)

Z-1

Z-1

Z-1

9
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b) Interpolation filters

fig 5. Expanding by 2

Polyphase implementation of interpolation filter

(10)

x(n) y(n)
2 H(z)

y(n)

fig 6. Polyphase implementation of an interpolation filter

2
x(n)

10

R0(z)

R1(z)

Z-1

y0(n)

y1(n) 2

Polyphase representation (Type 2) of an interpolation filter
2 –1 2

H(z) =  R1(z  )+ z R0(z )
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fig7. Polyphase implementations of L-fold interpolation filter

R0(z)

R1(z)

L

�A direct form implementation of H(z) is inefficient because, at most 50% of the input  
samples are nonzero and the remaining multipliers are resting. Those multipliers which  
are not resting are expected to complete their job in half unit of time because the outputs  
of the delay elements will change by that time. In a polyphase implementation Rl(z) are  
operating at the input rate, and none of the multipliers are resting. Each multiplier gets one  
unit of time to complete its task.The complexity of the system is (N+1) MPU’s and N-1  
APU’s.
�Similarly for L-fold interpolation filters, the complexity is (N+1) MPU’s and (N-L+1)  
APU’s.

x(n)

RL-1(z) L
y(n)

Z-1

Z-1

Z-1

L
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Linear phase FIR Decimation filters.

12

(11)

i.e.

i.e.  

i.e

N

Let H(z) = å h(n)z–n where h(n) = h(N-n)

n  = 0

Example 3 -

Let N = 4(even), H(z) = 1 + 2z–1 + 4z–2 + 2z–3 +z–4

Then it’s polyphase representation is given as

H(z) = 1 + 2z–1 + 4z–2 + 2z–3 + z–4

H(z) = 1 + 4z–2 + z–4 + 2z–1 + 2z–3

H(z) = 1 + 4z–2 + z–4 + z–1(2 + 2z–2 )
2 –2 –4

E0(z  ) =  1 + 4z + z
2 –2

E1(z ) = 2 + 2z or
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Here the filters are not symmetric but they are mirror images of one another.
� From this example we can generalize that for a linear FIR decimated filter,  

if E0(z) and E1(z) are the Type 1 polyphase components then
(a) if N is even, then e0(n) and e1(n) are symmetric sequences and
(b) if N is odd, then e0(n) is the mirror image of e1(n).

13

–1 –2
E0(z) = 1 + 4z + z ,

–1
E1(z) =  2 + 2z . So, each of the filters E0(z) and

E1(z) has symmetric impulse response.

Consider N = 5(odd), H(z) = 1 + 2z–1 + 4z–2 + 4z–3 + 2z–4 + z–5 , then it’s polyphase  
representation is given as

H(z) = 1 + 4z–2 + 2z–4 + 2z–1 + 4z–3 + z–5

i.e. H(z) = 1 + 4z–2 + 2z–4 + z–1(2 + 4z–2 + z–4 )

2 –2 –4
which implies E0(z  ) =  1 + 4z + 2z

Therefore,

2 –2 –4
E1(z  ) =  2 + 4z + z

–1 –2
E0(z) = 1 + 4z + 2z ,

–1 –2
E1(z) = 2 + 4z + z .
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� For a linear FIR decimated filter, we obtain a factor of two saving in multiplication  
rate when compared with a non-linear FIR filter.

c) Polyphase implementation of Uniform DFT filter banks.

(12)

(13)

(14)

so, we have a bank of M filters, each of which is a uniformly shifted version of H0(z).

fig 8. Uniform DFT filter bank

we have Xk(z) = Hk(z)X(z) where
k

Hk(z) = H0(zW ) with
–1 –(M – 1)

H0(z) =  1 + z + … + z

x(n)

14

z-1

z-1

z-1

s0(n)

s1(n)

M-1s (n)

*
W

x0(n)

x1(n)

M-1x (n)
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kand the output X (z)

fig 9 - Implementation of the uniform DFT filter bank using polyphase decomposition.

k 0 l
–1 –k M(z W ) E (z )

Polyphase representation
Assume that the prototype H0(z) has been expressed as in 14. The kth filter can then be

M – 1
l

å
l = 0

expressed as H (z) = H (zWk ) =

can be obtained as
M – 1

–kl –l M
Xk(z) = å W (z El(z )X(z)) . This shows that the M filters can be implemented

l = 0
as shown in figure 8.

x(n)

z-1

z-1

z-1

*
W

x0(n)

x1(n)

xM-1(n)

E0(zM)

E1(ZM)

EM-1(zM)

15
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Decimated uniform DFT banks.

fig 10. Redrawing of fig -9 when xk(n) is decimated by M

x(n)

z-1

z-1

z-1

*
W

x0(n)

x1(n)

xM-1(n)

E0(z)

E1(Z)

M

M  

M EM-1(z)

16
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fig 11. The counterclockwise commutator model for a delay chain followed by decimators.
(a) Example with M = 3, and (b) operation of the commutator switch.

4. Commutator models

3

3

3

n = 0

(a)

17

n = -2, 1, 4 . . . n = -1, 2, 5 . . . n = 0, 3, 6 . . .
(b)
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fig 12. The polyphase implementation of a decimation filter (M = 3) using a  
counterclockwise commutator model

n = 0

18

E0(z)

E1(z)

E2(z)
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5. The Polyphase Matrix

a) Analysis Bank

(Type 1 polyphase) (15)

This equation can be written in matrix form as

(16)

(17)

where E(z) = (18)

M – 1
–l M

Hk(z) = å z Ekl(z )
l  = 0

H0(z)

…
HM – 1(z)

E00(z)

…

E01(z)

…

E0, M – 1(z)

…
EM – 1, 0(z) EM – 1, 1(z) EM – 1, M – 1(z)

1
…

z–(M – 1)

=

that is, as

h(z) = E(zM )e(z)

E00(z)

…

E01(z)

…

E0, M – 1(z)

…
EM – 1, 0(z) EM – 1, 1(z) EM – 1, M – 1(z)

19



The Polyphase Representation

fig 13. Type1 polyphase representation of an analysis bank. E(z) is called the polyphase  
component matrix for the analysis bank.

H0(z)

H1(z)

H2(z)

z-1

z-1

z-1

E(zM)

20
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(Type 2 polyphase) (19)

using matrix notation we have

(20)

(21)

R(z) = (22)

b) Synthesis Bank

The set of synthesis filters can also expressed in a similar manner as
M – 1

å z–(M – 1 – l)R (zM )
lk

l = 0

Fk(z) =

F0(z) … FM – 1(z) z–(M – 1) … 1

M
R00(z ) …

M
R10(z ) …

M
R0, M – 1(z )

M
R1, M – 1(z )

M M
RM – 1, 0(z ) … RM – 1, M – 1(z )

=

this can be written as

fT(z) =  z–(M – 1)e (̃z)R(zM) where

R00(z) …

R10(z) …

R0, M – 1(z)
R1, M – 1(z)

RM – 1, 0(z) … RM – 1, M – 1(z)

21
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fig 14. Type 2 polyphase representation of a synthesis bank. R(z) is the polyphase component  
matrix for the synthesis bank.

F0(z)

F1(z)

MR(z )

z-1

22

z-1

F2(z)
z-1
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6. Polyphase representation of M-channel QMF bank

fig 15. The M-channel maximally decimated filter bank, also called M-channel QMF bank

1 1

M-1 M-1

H (z) M

H0(z) M M F0(z)

M F (z)

H (z) M M F (z)

x(n)

23

z-1

z-1

z-1

z-1

z-1
z-1

x’(n)

Analysis Bank Synthesis Bank
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Using the polyphase representation for analysis and synthesis bank(fig 13 and fig14),  
the M-channel maximally decimated filter bank can be represented as shown in fig 16

fig 16. Polyphase representation of an M-channel maximally decimated filter bank

R(zM)

z-1

z-1

z-1

M

M

M

M

M

M

x(n)

x’(n)

z-1

24

z-1

z-1

E(zM)
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By using noble identities, we can redraw fig 16 as shown in fig 17.

M

M

M

M

M

M

z-1

z-1

z-1

z-1

z-1

z-1

E(z) R(z)

Polyphase matrices

fig 17. Rearrangement of fig.16 using noble identities

x(n)

x’(n)

25
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Finally, we can combine the matrices and redraw the system as in fig 18.  
The M x M matrix P(z) is defined as

P(z) = R(z)E(z)

Fig 18. Simplification of fig 17 P(z) = R(z)E(z).

M

M

M

M

M

M

z-1

z-1

z-1 

z-1

z-1

z-1

x(n)

x’(n)

P(z)
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7. Relation between polyphase matrix and AC matrix

The Alias Component matrix( AC matrix) H(z) and the polyphase component matrix E(z)  
of any M-channel analysis bank are related as

(23)

and (24)

W is M x M DFT matrix.

H(z) = WD(z)ET(zM) where

D(z) = diag 1 … z–(M – 1)

27


